53 research outputs found

    Threat-sensitive anti-predator defence in precocial wader, the northern lapwing Vanellus vanellus

    Get PDF
    Birds exhibit various forms of anti-predator behaviours to avoid reproductive failure, with mobbing—observation, approach and usually harassment of a predator—being one of the most commonly observed. Here, we investigate patterns of temporal variation in the mobbing response exhibited by a precocial species, the northern lapwing (Vanellus vanellus). We test whether brood age and self-reliance, or the perceived risk posed by various predators, affect mobbing response of lapwings. We quantified aggressive interactions between lapwings and their natural avian predators and used generalized additive models to test how timing and predator species identity are related to the mobbing response of lapwings. Lapwings diversified mobbing response within the breeding season and depending on predator species. Raven Corvus corax, hooded crow Corvus cornix and harriers evoked the strongest response, while common buzzard Buteo buteo, white stork Ciconia ciconia, black-headed gull Chroicocephalus ridibundus and rook Corvus frugilegus were less frequently attacked. Lapwings increased their mobbing response against raven, common buzzard, white stork and rook throughout the breeding season, while defence against hooded crow, harriers and black-headed gull did not exhibit clear temporal patterns. Mobbing behaviour of lapwings apparently constitutes a flexible anti-predator strategy. The anti-predator response depends on predator species, which may suggest that lapwings distinguish between predator types and match mobbing response to the perceived hazard at different stages of the breeding cycle. We conclude that a single species may exhibit various patterns of temporal variation in anti-predator defence, which may correspond with various hypotheses derived from parental investment theory

    Coevolution of Male and Female Genital Morphology in Waterfowl

    Get PDF
    Most birds have simple genitalia; males lack external genitalia and females have simple vaginas. However, male waterfowl have a phallus whose length (1.5–>40 cm) and morphological elaborations vary among species and are positively correlated with the frequency of forced extra-pair copulations among waterfowl species. Here we report morphological complexity in female genital morphology in waterfowl and describe variation vaginal morphology that is unprecedented in birds. This variation comprises two anatomical novelties: (i) dead end sacs, and (ii) clockwise coils. These vaginal structures appear to function to exclude the intromission of the counter-clockwise spiralling male phallus without female cooperation. A phylogenetically controlled comparative analysis of 16 waterfowl species shows that the degree of vaginal elaboration is positively correlated with phallus length, demonstrating that female morphological complexity has co-evolved with male phallus length. Intersexual selection is most likely responsible for the observed coevolution, although identifying the specific mechanism is difficult. Our results suggest that females have evolved a cryptic anatomical mechanism of choice in response to forced extra-pair copulations

    An Alternative Theoretical Approach to Escape Decision-Making: The Role of Visual Cues

    Get PDF
    Escape enables prey to avoid an approaching predator. The escape decision-making process has traditionally been interpreted using theoretical models that consider ultimate explanations based on the cost/benefit paradigm. Ultimate approaches, however, suffer from inseparable extra-assumptions due to an inability to accurately parameterize the model's variables and their interactive relationships. In this study, we propose a mathematical model that uses intensity of predator-mediated visual stimuli as a basic cue for the escape response. We consider looming stimuli (i.e. expanding retinal image of the moving predator) as a cue to flight initiation distance (FID; distance at which escape begins) of incubating Mallards (Anas platyrhynchos). We then examine the relationship between FID, vegetation cover and directness of predator trajectory, and fit the resultant model to experimental data. As predicted by the model, vegetation concealment and directness of predator trajectory interact, with FID decreasing with increased concealment during a direct approach toward prey, but not during a tangential approach. Thus, we show that a simple proximate expectation, which involves only visual processing of a moving predator, may explain interactive effects of environmental and predator-induced variables on an escape response. We assume that our proximate approach, which offers a plausible and parsimonious explanation for variation in FID, may serve as an evolutionary background for traditional, ultimate explanations and should be incorporated into interpretation of escape behavior
    • …
    corecore